
Vibration suppression by designing and fine-tuning the 
Tuned Mass Damper (TMD)

Abstract - Vibration mitigation is a necessary step in designing a functional system having 
multiple masses residing on or within it. Often working conditions can be said to be dynamic 
and involves interaction of these several masses. The masses, often referred as ‘Degrees of 
Freedom’ in pure mechanical terms, when interact among themselves or external forcing 
stimuli, results in the phenomenon of Resonance where the system vibrates severely and might 
lead to rupture or failing of the structure. Hence, it is desired that such severe magnitudes of 
vibration be reduced wherever the phenomenon of resonance is observed. There are several 
methods to achieve this task, namely Vibration Isolation, and Vibration Suppression. The first 
method aims at completely isolating the desired component or limiting the path for 
transmission of vibration to that component. The second method, which is the aim of our 
study, deals with addition of damping which would dissipate the vibration energy by 
transforming it into heat. The method is even more enhanced when an appropriately tuned 
feedback loop is employed in the system. 

 Introduction
 To suppress the vibration amplitudes that the structure is observing, we must 
realize that there exists a phenomenon of Resonance, and that the resonance is 
depended upon the number of Degrees of freedom that the system comprises of. 

Consider a Multi-degree of freedom mass-spring-damper system having 
multiple masses interacting or responding to the primary forces that are 
acting/applied on it. Let us assume that the forcing input is a harmonic sinusoidal 
input with a particular driving frequency. The MDOF system can have natural 
frequencies equal to number of degrees of freedom which can be found out from 
eigenvalue problem of its mass-normalized stiffness matrix. If the system finds its 
one of the natural frequencies to be equal to the input driving frequency, then 
there is resonance in the system observed at that ith natural frequency. That is 
where the amplitude peaks indefinitely until the phase shift changes the interacting 
frequencies. To depict the picture clearly, let us evaluate a simple Multi-degree of 
freedom system and try different vibration absorption scheme with different cases 
of Passive and Active vibration absorption. We would try to observe a physical 
system which is untuned and is vibrating under the application of unity sinusoidal 
force at one of the masses. Then, the next set-up would be a Passive Vibration 



Absorption system where we append additional suppression mass to the system 
with the aim of further reducing the vibration amplitudes. Lastly, we would tune 
the entire system using Feedback gain control loop making it the fully tuned Active 
Vibration absorption system. 

 

Quarter Car model - A case study 
A normal engineering practice is to design the parameters of a full-scale car by 
performing the analysis onto a small segment of the car, the quarter portion. We 
can relax some of the conditions of symmetry to make the calculations easy.  

 

Figure 1: A full scale dynamic model of a car (Vincenzo Punzo) 

 

The dynamic model of a full-scale car shown above includes important properties 
of tire dynamics as well. In order to design the unsprung portion of the car, it is best 
to consider the tire as having damping property along with the stiffness 
characteristics.  

The scope of study in this review paper is focused on a performance car, specifically 
a racing car. The properties of a Race-tune cars are different from normal cars used 
in daily activities. Racing cars are supposed to not remain airborne for a longer time 
after hitting an irregularity on the road. This is achieved by having a spring-rate 



which is much lower than the stock specs. Spring which ensures regaining the 
contact to the ground more immediately. A lower spring rate at the unsprung level 
would mean that higher amount of vibrational energy will be transmitted across to 
the sprung mass. And, it is also not practical to let these vibrations transmit to the 
sprung mass. Hence, often the spring-rates at the sprung level are kept high or 
equal to the spring-rates of the tire.   

Primary Structure Parameters  

We are considering a quarter portion of the car system dynamics, which is 
essentially a 2 DOF system in its primary form. To perform analysis on the quarter 
section of the car, let us study how the natural frequencies of these 2 DOF system 
is posed over a range of natural frequencies. We would compute the natural 
frequency of the system at hand using the mass-normalized stiffness matrix of the 
system using eigenvalue problem. In the figure below; 

 mus , ms = Unsprung and sprung masses, respectively. 
 kus , ks = Spring rates at the unsprung and sprung level. 
 cus , cs = Damping coefficients at the unsprung and sprung levels. 
 xus = Coordinate to track displacement of mass (mus) 
 xs = Coordinate to track displacement of mass (ms) 
 Fo = Force from irregular road profile on masses. 
 
The ultimate source of vibration is the ground where the tire system maintains a 
continuous contact. Sprung masses include all that lies above the tire and the 
suspension system. Unsprung mass includes the tire and its fixtures. 
 
 
 
 

 

 

 

 

 

 

Figure 2.) Schematic diagram of a Quarter Car 2DOF system 

Xs 

 

 

 

Xus 



 

The equation of motion for the above 2 DOF system is given in the matrix form as; 

M�̈�𝐱 + C�̇�𝐱 + K𝐱𝐱 = 0 

In more specific terms; 
 

�Mus 0
0 Ms� �̈�𝐱  +  �Cus + Cs −Cs

−Cs Cs � �̇�𝐱  +  �𝑘𝑘𝑢𝑢𝑢𝑢 + 𝑘𝑘𝑢𝑢 −𝑘𝑘𝑢𝑢
−𝑘𝑘𝑢𝑢 𝑘𝑘𝑢𝑢 � 𝐱𝐱 =   𝐅𝐅𝐅𝐅 𝐬𝐬𝐬𝐬𝐬𝐬 𝛚𝛚𝛚𝛚

𝟎𝟎  

 

Where x = [x1 x2]T is the displacement vector 

The following specifications are chosen for the primary structure analysis which is 
a quarte car model without any type of vibration absorption arrangement; 

Parameters Values 
Sprung mass, ms 120 kg 

Unsprung mass, mus 30 kg 
Spring-rate suspension, ks 9000 N/m 

Spring-rate tyre, kus 9000 N/m 
Damping coefficient, c [αM + βK] Proportional damping of 1% 

Damping ratio, ξ 1 % 
Force, F(t) 1 N upwards at unsprung mass 

 

As the original system has 2 Degrees of Freedom, the natural frequencies 
obtained from mass normalizes stiffness matrix are; 

𝛚𝛚𝛚𝛚 =  𝟓𝟓. 𝟗𝟗𝟗𝟗𝟎𝟎𝟎𝟎    𝐫𝐫𝐫𝐫𝐫𝐫/𝐬𝐬𝐬𝐬𝐬𝐬 

    𝛚𝛚𝛚𝛚 =  𝛚𝛚𝟓𝟓. 𝛚𝛚𝟗𝟗𝟓𝟓𝟎𝟎     𝐫𝐫𝐫𝐫𝐫𝐫/𝐬𝐬𝐬𝐬𝐬𝐬 

 

 Justification for the chosen parameters 

Since we are focusing our analysis on a performance race car, we must realize how 
they are different from a daily-use car, in the sense that certain performance 
parameters are tweaked. For example, the cabin weight of a normal use car would 
lie in the range of 800 kgs and the suspension stiffness is of the order of 1/100th in 
comparison to the stiffness of the tyre. But, the case of Performance race cars is 
different. They are required to make sharp turns and must run flatter to the ground 
without much pitching or rolling. Hence, the spring-rate at the tyres are kept low 



to ensure that am immediate contact to the ground is regained after hitting an 
irregularity. On the contrary, the spring rate at the suspension is kept appropriately 
high in comparison to tyre stiffness. The reason being the car should run almost 
parallel to the road without undergoing rolling and pitching motions while 
negotiating the turn or immediate changes in the direction. Also, weight of the 
whole car is a major limitation to its intended performance. Therefore, the sprung 
weights are found out of the order of 300 – 700 kgs. And normally the unsprung 
mass is the mass that the tyre assembly has. And we are assuming that the system 
has light damping, hence the value of ‘ξ’, damping ration is taken as 0.01 for the 
primary structure.  

To gain insight into the behavior of the system, we must perform the modal 
analysis. Modal analysis is the important design technique that characterizes the 
solution of the dynamic properties in the frequency domain. Often the mechanical 
systems have damping, and it becomes numerically more complex to compute the 
eigenvalues of the system. To model such large-order system, we utilize State 
Variable representation to gain the perspective of the system behavior from 
frequency response plots. 

Frequency response plots, also known as Bode Plots shows peaks at each mode 
that the system has because of the number of degrees of freedom. These peaks are 
basically asymptotes occurring at these modes of vibration. Along these 
asymptotes, we will be able to measure the magnitude of the vibration that each 
mass is undergoing when a certain natural frequency is hit. To verify that all the 
masses will vibrate at that particular natural frequency, we should observe bumps 
coming from each mass on the plot on that frequency value.  

Based on how symmetric the values of each mass are, usually the 1st mode is the 
one that vibrates with the highest magnitude. For the designers of a structure, it is 
an indication that that particular mode must be suppressed with addition of an 
absorber mass. What the absorber mass would do is that it would absorb a 
significant amount of vibrational energy and will undergo oscillations but within 
certain practical limits. 

Before we tune the absorption system, let us look at the bode plots of our original 
system. Ours being a 2 DOF system in its original form will show two sharp spikes 
corresponding to two natural frequencies of the system. The frequency response 
plot (bode plot) is in meters vs rad/sec. 



Figure 3.) Frequency response plot of the primary structure 

 

The first resonance spike occurs at ω1 with sprung mass having higher amplitude 
of vibration than unsprung mass of order of 5.8786 mm. Ideally, we would like to 
suppress this amplitude and make it approach to zero theoretically. The other spike 
occurs at ω2, where the unsprung mass bounces higher than the sprung mass.  

By changing the damping factor ‘ξ’, damping coefficient ‘c’ and spring-rates ‘k’, one 
can observe several changes in the way the resonant spikes are located along the 
bandwidth of frequency. The damping factor of 1% throughout the system suggests 
that there is light damping in the structure. This can be understood intuitively by 
the fact that the frequency responses are sharp and the values are in significant 
number of millimeters. For damping factor of 12 %, the overall amplitudes of the 
vibration of masses goes down. The response plot is attached below. The damping 
value’s choice is determined by how much damping is affordable vs how much 
damping is necessary. For cars and other automobiles, there are weight and space 
constraints and thus increasing the damping would take a toll on the curb weight 
of the structure. We are concerned with those regions where these modes of 
vibration occur, other regions where the vibration of masses are running out of 
phase are not of importance. 

 



Figure 4.) Frequency response plot of the primary structure with 12 % damping 

 

Design for Vibration Suppression 

Passive Vibration Absorption System 
Addition of extra mass is going to put up more weight in the structure. Hence, care 
is taken that the absorber’s mass is not beyond 50 % of the primary structure’s 
mass (case only for cars and Automobiles where passenger and other weights are 
accounted for) otherwise the effort will be redundant as the overall mass will 
increase by an order of half. Also, while tuning an absorber mass, one must be wary 
of the location where it is to be fixed.  

Let the mass of the absorber added in our case be equal to 50 kgs. The tuning of 
passive system can be done in two ways. One case, where there is a fully tuned 
passive vibration absorption system, the other case which has no damping attached 
to the absorber mass. 

 

  



A.) Fully-tuned Passive absorption case; 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.) Schematic diagram – Passive vibration absorption system (fully-tuned) 

 
In this case, there is an additional mass-spring-damper on top of the Sprung mass. 
When fully tuned, the combined effect of both the damping and stiffness at the 
absorber level factors-in to suppress the 1st mode of vibration that occurs around 
the asymptote of ω1 = 5.9300 rad/sec. But to target the suppression of the first 
mode is ensured by adopting appropriate value of absorber’s mass, ma, and then 
approximating the spring-rate at the absorber mass level from it. The calculations 
are performed as; 

ka = maω1
2 

Thus, the absorber mass (basically absorber mount) must be having the stiffness ka. 
Since now we have added an extra mass, ma, the system is now a 3 DOF model. 
Appropriate changes in the Equation of motion of these 3 DOF system must be 
made. The 1 N force is still being applied by the road profile on the unsprung mass. 



The following equation of motion is registered; 
 

�
Mus 0 0

0 Ms 0
0 0 Ma

� �̈�𝐱  +  �
Cus + Cs −Cs 0

−Cs Cs + Ca −Ca
0 −Ca Ca

� �̇�𝐱  +  �
𝑘𝑘𝑢𝑢𝑢𝑢 + 𝑘𝑘𝑢𝑢 −𝑘𝑘𝑢𝑢 0

−𝑘𝑘𝑢𝑢 𝑘𝑘𝑢𝑢 + 𝑘𝑘𝑘𝑘 −𝑘𝑘𝑘𝑘
0 −𝑘𝑘𝑘𝑘 𝑘𝑘𝑘𝑘

� 𝐱𝐱 =   
𝐅𝐅𝐅𝐅 𝐬𝐬𝐬𝐬𝐬𝐬 𝛚𝛚𝛚𝛚

𝟎𝟎
𝟎𝟎

 

 

Running the state space analysis again will affect in suppression of the amplitude 
at 1st mode and make it approach to 0. However, it will also result into creation of 
additional side-bounds due to vibration of absorber mass. To note, the amplitudes 
of all the peaks should be lower than that of the primary structure’s bode plot. 
Thus, there will be a total of 3 observable peaks or bumps at least signifying 3 DOF. 
The frequency response plot for a fully-tuned passive system is attached below; 

Figure 6.) Frequency response plot of Passive (fully-tuned) system  

 

Here, we observe that the amplitude of the primary system occurring at ω1 is now 
approximately equal 0. We also observe that the side-bounds have been created, 



one at the frequency of 4.41 rad/sec, other one at 8.05 rad/sec. Though the side-
bound is not a crisp peak, it’s a bump afterall showing one of the modes of 
vibration. The 3rd mode remains nearly at the same position as in the original case. 
The highest amplitude of rise is 1.7516 mm, reduction of almost a fifth from the 
original case’s amplitude.       

Now let’s look at how the amplitudes are posed in a passive vibration absorption 
system if no damper is attached at absorber mass level. 

 

B.) Passive absorption system without damping; 
 

 
 
 
 
 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

Figure 6.) Schematic diagram - Passive absorber system without damping 
 

One can easily say that is this case, the absence of damper will leave the magnitude 
of vibration of absorber mass much higher than the Primary structure case. This is 
because of the fact that the mass of absorber is now only having a certain spring-
rate which has been designed from the  ma  &  ω1  values. This absorber will oscillate 



with all it’s stiffness characteristics indefinitely till that particular mode of vibration 
goes out of phase. Thus, we observe the amplitudes of all the masses to rise rather 
than fall.  

The following equation of motion now changes to the following where last row and 
column in the damping matrix would basically become 0; 
 

�
Mus 0 0

0 Ms 0
0 0 Ma

� �̈�𝐱  +  �
Cus + Cs −Cs 0

−Cs Cs 0
0 0 0

� �̇�𝐱  +  �
𝑘𝑘𝑢𝑢𝑢𝑢 + 𝑘𝑘𝑢𝑢 −𝑘𝑘𝑢𝑢 0

−𝑘𝑘𝑢𝑢 𝑘𝑘𝑢𝑢 + 𝑘𝑘𝑘𝑘 −𝑘𝑘𝑘𝑘
0 −𝑘𝑘𝑘𝑘 𝑘𝑘𝑘𝑘

� 𝐱𝐱 =   
𝐅𝐅𝐅𝐅 𝐬𝐬𝐬𝐬𝐬𝐬 𝛚𝛚𝛚𝛚

𝟎𝟎
𝟎𝟎

 

 

This will be clear from the bode plot of the without damping passive system case. 

 

Figure 7.) Frequency response plot of Passive System {w/o damping} 
 

As can be observed, the maximum amplitude undergone by ma  is 16.964 mm. On 
comparison, this is a huge rise in the amplitude value from 5.8786 mm of the 
original case. To achieve lower values of peaking amplitude, the designer will have 
to choose a spring-rate, 1000 times of the current ka rate since all he has to rely on 
is the spring-rate because the damper is absent. But there are always high costs 
associated with getting such a stiffness. 
 



Passive and active methods of vibration damping differ in the way they respond to 
and manage vibrations. A passive system uses simple mechanical devices, fluids, or 
elastomeric materials, whereas active vibration damping relies on a closed-loop 
system with measured feedback. Active system aims down at further reducing the 
overall amplitude of the system with a measured amount of feedback force that 
opposes the unwanted vibrational motion. 

Active Vibration Absorption System 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.) Schematic diagram – Active vibration absorption system 
 

The following system has been added with a feedback control loop for obtaining a 
force equal in magnitude and opposite in direction. The above schematic 
representation of Active control system has a Gain parameter which must be tuned 
in order to receive appropriate feedback force that counters the amplitudes of 
vibration. The feedback force is given by the relation; 
 

𝑓𝑓𝑓𝑓 = −𝑘𝑘𝑘𝑘 ∗ �̇�𝒙𝑢𝑢 



where 𝑘𝑘𝑘𝑘 is the velocity constant, must be assigned a value proportional to the 
velocity scale of the vibration of the structure whose vibration needs to be 
absorbed. We are measuring the velocity constant up against the the scale of 
vibration since it is feasible to assume the nature of such small scale of vibration 
as depending on velocity of its motion. We can also tune in terms of 
displacement constant or acceleration constant provided the nature of activity 
is in relativistic terms of displacement or acceleration.  
A proportional feedback force is going to suppress the amplitude of the primary 
mode even more. We should keep in mind the stability of the system all the time 
when tuning with an absorber mass having feedback control loop. One 
important assumption here is that the state variables are having Continuous 
linear time-invariant characteristics, i.e.; 
 

�̇�𝒙 = Ax(t) + Bu(t)   
 y = Cx(t) + Du(t). 

 
We must make a small change in the state matrix [A] whenever there is a feedback 
system present. That change is given by A_feedback = { A – (Bf*kv) }. 
‘A_feedback’ is still the state matrix that is the input variable in the state space 
command in MATLAB. Supplying the necessary state variable in ‘ss’ command in 
MATLAB, we solve for the magnitude and phase degree response of the system 
with respect to frequency. The bode plot for Active case is give below; 

Figure 9.) Frequency response plot of Active vibration absorption system 
 



A noteworthy thing from the above plot is that instead of further decreasing the 
amplitude of the 1st mode, the amplitude reduces by a very small factor. Also, the 
system of absorber mass with the feedback loop remains in the stable region of the 
root locus. Our actual aim of reducing the 1st mode’s amplitude and making it to 
converge to zero has been achieved. The final amplitude of the 1st mode is now 
0.08735 mm with the Active system.  
 
The eigenvalues corresponding to the Active absorption system and Passive 
absorption system are given below.  
 

Passive Vibration 
Absorption 

system 

  -0.2847 +25.3103i 
  -0.2847 -25.3103i 
  -1.2375 + 7.8920i 
  -1.2375 - 7.8920i 
  -0.2067 + 4.3942i 
  -0.2067 - 4.3942i 

Active Vibration 
Absorption 

system 

    -0.3445 +25.3094i 
  -0.3445 -25.3094i 
  -0.9834 + 7.9438i 
  -0.9834 - 7.9438i 
  -0.2593 + 4.3826i 
  -0.2593 - 4.3826i 

 
The real part of all the eigenvalues are negative, is what defines stability of the 
system. We find these values by using eig(A_p) & eig(A_feedback) function in 
MATLAB which are our state matrices for the input in �̇�𝑥.  
 
This system can also be evaluated in the Laplace domain instead of time domain. 
All we require is a transfer function that represents every degree of freedom. For 
our system with chosen parameters, we have following transfer functions for our 
primary, passive and active system; 
 
For Primary case: 

For mass 1; G1(s) 
0.03333 s2 + 0.004804 s + 2.5 
--------------------------------------------------------- 
s4 + 0.6245 s3 + 675.1 s2 + 93.67 s + 2.25e04 

 

For mass 1; 
G2(s)  

 
0.001601 s + 2.5 
------------------------------------------------ 
s^4 + 0.6245 s^3 + 675.1 s^2 + 93.67 s + 2.25e04 
 



For Passive case: 

For mass 1; G1(s) 
0.03333 s^4 + 0.09925 s^3 + 4.17 s^2 + 5.169 s + 87.91 
----------------------------------------------------------------------------- 
s^6 + 3.458 s^5 + 726.5 s^4 + 1973 s^3 + 5.522e04 s^2 + 4.829e04 s + 7.912e05 

For mass 1; G2(s)  
0.001601 s^3 + 2.503 s^2 + 5.056 s + 87.91 
----------------------------------------------------------------------------- 
s^6 + 3.458 s^5 + 726.5 s^4 + 1973 s^3 + 5.522e04 s^2 + 4.829e04 s + 7.912e05 

For mass 1; G3(s)  
0.003203 s^2 + 5.056 s + 87.91 
----------------------------------------------------------------------------- 
s^6 + 3.458 s^5 + 726.5 s^4 + 1973 s^3 + 5.522e04 s^2 + 4.829e04 s + 7.912e05 

 
 
For Active case: 

For mass 1; G1(s) 
0.03333 s^4 + 0.09925 s^3 + 4.17 s^2 + 5.169 s + 87.91 
----------------------------------------------------------------------------- 
s^6 + 3.458 s^5 + 726.5 s^4 + 1973 s^3 + 5.522e04 s^2 + 4.829e04 s + 7.912e05 

For mass 1; G2(s)  
0.001601 s^3 + 2.503 s^2 + 5.056 s + 87.91 
----------------------------------------------------------------------------- 
s^6 + 3.458 s^5 + 726.5 s^4 + 1973 s^3 + 5.522e04 s^2 + 4.829e04 s + 7.912e05 

For mass 1; G3(s)  
0.003203 s^2 + 5.056 s + 87.91 
----------------------------------------------------------------------------- 
s^6 + 3.458 s^5 + 726.5 s^4 + 1973 s^3 + 5.522e04 s^2 + 4.829e04 s + 7.912e05 

 
 
These transfer functions are in s domain, which can be supplied in the ‘ss’ command 
in MATLAB after making necessary modification to the continuous-time invariant 
state space models to continuous-time invariant Laplace domain equations. 
 
For the primary system with parameters taken as below; 

- unsprung mass, mus = 30 kg; 
- sprung mass, ms = 120 kg; 
- Unsprung mass spring-rate, kus = 9000 N/m; 
- Sprung mass spring-rate, ks = 9000 N/m; 

we have the following tuned-mass absorber parameters which display optimum 
vibration suppression characteristics. 
   



Parameters Passive Absorption 
System 

Active Absorption 
System 

Absorber mass, ma 50 kg 50 kg 

Spring-rate, ka 1758.6 N/m 1758.6 N/m 

Damping coefficient, ca [100 - 170] Ns/m [80 - 150] Ns/m  

Maximum vibration 
Amplitude, X 1.7516 mm 1.377 mm 

Natural Frequencies, ω 
ω1 = 4.399 rad/sec 
ω2 = 8.05 rad/sec 
ω3 = 25.311 rad/sec 

 
ω1 = 4.39 rad/sec 
ω2 = 8.02 rad/sec 
ω3 = 25.3055 rad/sec 
 

Damping 
 factor, ξ 

(for mass ma) 
(for mass ms) 
(for mass mus) 

ξ1 = 0.01124 
ξ2 = 0.1549 
ξ3 = 0.0469 

ξ1 = 0.0143 
ξ2 = 0.2165 
ξ3 = 0.0820 

 
We can assertively say that with increasing the damping factor, there is going to be 
much higher damping and the system will have a highly suppressed amplitude. 
From the graph of Transmissibility ratio vs damping values ξ given below, we find 
that as we increase the ξ value, the asymptote gradually gets near to 1 as compared 
to very low values like 0.01 where the frequency Transmissibility ratio TR is 
converging to infinity. A TR -> ∞, we have resonance conditions. 

Figure 9.) Transmissibility Ratio for different damping values ξ  



Observations and conclusions from the tuning process 
 
-  With the above listed variables, the whole vibration suppression scheme is 
working the best. Owing to the limitation of absorber mass’s value, when we try to 
achieve the objective of suppressing the value of 1st mode of vibration of our 
original system. In doing that, we would observe that as we shift the value of 
damping coefficient, ca to the left of the above stated value, the amplitude peaks 
for the Passive case will go higher than the primary structure’s maximum 
amplitude. Also, instead of creating two side-bounds, one of the modes will get 
overlapped on the other completely, and hence the plots look unacceptable. The 
above value of ca is the bandwidth where one can play around. But it should always 
be the case that the ca of the Passive case should be set higher that ca Active case 
because we do not require a high value of ca in active case since there is feedback 
system present which will contribute much higher in generating the opposing force. 
 
- Changing the gain value Kv in the range of 10 to 30 works well in lowering the 
amplitudes and also within this range, the real part of the eigenvalues is negative, 
i.e., in the stable region. Below and above this value, the eigenvalue’s real part runs 
into the positive real axis region thus making the system unstable. 
 
- Values of masses are not very symmetric; one is 30 kgs, other is 120 kgs. Also, 
for an automobile, the practical values of stiffnesses are of the order of 10^5, 10^6.  
For the sake of analysis, here we are not adopting such high values of stiffness as it 
would not have any visible result improvement because they are the industry 
standard values. Same goes with the value of mass. Assuming it in the limit of 1/10th 
or 1/7th of primary mass is not going to show any good results especially because 
of the fact that masses values are highly unsymmetrical.  
 
Here are the final set of parameters chosen for the purpose of this analysis; 
Unsprung mass, mus 30 kg 
Sprung mass, ms 120 kg 
Spring-rate, kus 9000 N/m 
Spring-rate, ks 9000 N/m 
Damping coefficient (for Passive), ca    100 Ns/m 
Damping coefficient (for Active), ca 90 Ns/m 
Damping factor for primary structure, ξ 1% (case of light damping in the system) 
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APPENDIX 
 

Nomenclature 
ms          Mass of sprung weight       
mus        Mass of unsprung weight 
ma       Mass of absorber 
ks            Spring-rate of sprung weight       
kus          Spring-rate of unsprung weight 
ka        Spring-rate of absorber 
cs            Damping coefficient at sprung weight       
cus          Damping coefficient at unsprung weight 
ca       Damping coefficient at absorber mass 
ξ         Damping factor in the system 
Kv       Velocity constant 
fg        Feedback control force 
TR      Transmissibility ratio 
r         frequency ratio 
ω        frequency, rad/sec 



clc;clear all

%% %%%%%%    PART B   %%%%%%%%%%%
% 1.)))))) Primary structure with a unit force input at m1. 
% Setting up the system values for mass and springs at different levels.

% m1 = unsprung mass, m2 = sprung mass, k1 & k2 = stiffness accordingly 
m1 = 30; m2 = 120; k1 = 9000; k2 = 9000; ma = 50;
m = [m1 0;0 m2]; k = [k1+k2 -k2;-k2 k2];

% This section computes the values of constants 'alpha' & 'beta' to 
be ...% used for proportional damping. 

Minv = [1/sqrt(m1) 0;0 1/sqrt(m2)]; 
KTilda = Minv*k*Minv
[EigVec,EigValues] = eig(KTilda)
v1 = sqrt(EigValues(1,1))
v2 = sqrt(EigValues(2,2))

r = [0.02;0.02]; a = [1/v1 v1;1/v2 v2]; 
constants = a\r;
alpha = constants(1)
beta = constants(2)

% Now describing the state space variables;
c = alpha*m + beta*k  %%%% Proportional damping for the structure only.

Bf= [1;0]; %%% Assuming that the force is acting at unsprung mass level. 
A = [zeros(2) eye(2); -inv(m)*k -inv(m)*c]; 
B = [zeros(2,1);inv(m)*Bf];
C = [eye(2) zeros(2)];
D = zeros(2,1);
eig(A)
w = 0:0.01:50; % Giving the range of observation of natural frequencies.

sys=ss(A,B,C,0)
[mag,phase] = bode(sys,w);
figure(1)
plot(w,mag(1,:),w,mag(2,:));
legend('Unsprung Mass','Sprung Mass')
xlabel('Frequency [rad/sec]'); ylabel('Magnitude of Response [m]') 
title('Frequency response plot of Primary Structure');
legend('Unsprung mass (Mus)','Sprung mass (Ms)');

% %%%%% In laplace domain

P1 = bodeoptions;
P1.MagScale = 'linear';
P1.MagUnits = 'db';

grid on;
hold on
[n1,d1] = ss2tf(A,B,C,D)
G1 = tf(n1(1,:),d1)
G2 = tf(n1(2,:),d1)

% bodeplot(G1,P1) 
% bodeplot(G2,P1)

MATLAB code to perform State Space Analysis of design for 
vibration suppression



%% 2.)))))))  System with added absorber mass 'ma' - [Passive system]

% We set the value of spring-rate at the absorber mass as given below.% % 
min(v1,v2) gives me the 1st mode that i want to suppress
ka = ((min(v1,v2))^2)*(ma)  %%% Since we are suppressing the first mode. 
M = [m1 0 0;0 m2 0;0 0 ma]; K = [k1+k2 -k2 0;-k2 k2+ka -ka;0 -ka ka];

% Assuming damping ratio for passive case to be around 16.35 %
ca = 100;  %% Damping coefficient for the Passive Absorption case.
% % Damping matrix for overall Passive Absorption system case.
c_p = [c(1,1) c(1,2) 0;c(2,1) c(2,2)+ca -ca;0 -ca ca]

Bf_p= [1;0;0]; D_p = zeros(6,1);

A_p = [zeros(3) eye(3); -inv(M)*K -inv(M)*c_p]; 
B_p = [zeros(3,1);inv(M)*Bf_p];
C_p = [eye(3) zeros(3)];
SYS=ss(A_p,B_p,C_p,0)
[Mag,Phase] = bode(SYS,w);
figure(2)
plot(w,Mag(1,:),w,Mag(2,:),w,Mag(3,:))
xlabel('Frequency [rad/sec]'); ylabel('Magnitude of Response [m]'); 
title('Frequency response plot of Passive Vibration absorption System'); 
legend('Unsprung mass (Mus)','Sprung mass (Ms)','Absorber mass (Ma)');

% %%% In Laplace domain;

P2 = bodeoptions;
P2.MagScale = 'linear';
P2.MagUnits = 'db';

grid on;
hold on
[n2,d2] = ss2tf(A_p,B_p,C_p,zeros(3,1))
G_1 = tf(n2(1,:),d2) 
G_2 = tf(n2(2,:),d2) 
G_3 = tf(n2(3,:),d2) 
% bodeplot(G_1,P2) % 
bodeplot(G_2,P2)

%% 3.)))))  System with added feedback gain loop - [Active System]

KV = 30; %%%% Optimal value of feedback gain 'KV' ranges from  9<kv<30 
kv = -[0 0 0 0 KV 0];% State Feedback gain vector
Bf_p= [1;0;0]; 
D = zeros(6,1);
Bf_gain= [1;0;-1];

ca_a = 90; % Damping coefficient at absorber mass level for Active 
System% Damping matrix for the overall system in Active absorption case
C_P = [c(1,1) c(1,2) 0;c(2,1) c(2,2)+ca_a -ca_a;0 -ca_a ca_a]; 
% % State Variables for the Active case that has feedback
A_a = [zeros(3) eye(3); -inv(M)*K -inv(M)*C_P];
B_p = [zeros(3,1);inv(M)*Bf_p];
B_gain = [zeros(3,1);inv(M)*Bf_gain];



A_feedback = (A_a - (B_gain*kv));
C = [eye(3) zeros(3)];

SYS_a=ss(A_feedback,B_p,C,0)
[mag_a,phase_a] = bode(SYS_a,w);
figure(3)
plot(w,mag_a(1,:),w,mag_a(2,:),w,mag_a(3,:));
title('Frequency response plot of Active Vibration absorption System'); 
xlabel('Frequency [rad/sec]'); ylabel('Magnitude of Response [m]'); 
legend('Unsprung mass (Mus)','Sprung mass (Ms)','Absorber mass (Ma)');
% 
% % %%%% In Laplace Domain;

P3 = bodeoptions;
P3.MagScale = 'linear';
P3.MagUnits = 'db';%% Unit of Amplitude axis.'dB' - decibels ,'abs' - meter

grid on;
hold on
[n3,d3] = ss2tf(A_p,B_p,C_p,zeros(3,1))
g1 = tf(n3(1,:),d3) 
g2 = tf(n3(2,:),d3) 
g3 = tf(n3(3,:),d3) 
% % bodeplot(g1,P3) 
% % bodeplot(g2,P3) 
% % bodeplot(g3,P3) 
% 
eig(A_p)
eig(A_feedback)

%% Plotting of Transmissibility Ratio for different damping factor values 
wn = 5.93; %% frequency of 1st mode of vibration
w = linspace(0,11,1000);
r = w/wn;
% damping proportion values 

z1 = 0.25;
z2 = 0.1635;
z3 = 0.10;
z4 = 0.05;
z5 = 0.01;

    F1 = sqrt(((1+(2*z1*r).^2))./(((1-r.^2).^2 + (2*z1*r).^2)));     
F2 = sqrt(((1+(2*z2*r).^2))./(((1-r.^2).^2 + (2*z2*r).^2)));     
F3 = sqrt(((1+(2*z3*r).^2))./(((1-r.^2).^2 + (2*z3*r).^2)));     
F4 = sqrt(((1+(2*z4*r).^2))./(((1-r.^2).^2 + (2*z4*r).^2)));     
F5 = sqrt(((1+(2*z5*r).^2))./(((1-r.^2).^2 + (2*z5*r).^2)));
figure(4)

    plot(r,F1,r,F2,r,F3,r,F4,r,F5);yline(1,'--');
title('Plot of Transmissibility ratio for different damping values ξ')



Amplitude and Phase shift vs frequency plots 
This plot is on a log-log scale where the magnitude of vibration is expressed in terms of ‘dB’ decibels. The 
phase shift diagram is an important piece of information as well. Phase shift is seen whenever the structures 
hits its one of the many modes of vibrations. It is evident from the graphs below.  
 
 

Primary system 

 
Also, it is noteworthy from the phase shift graph that until the 1st mode of the structure’s vibration, the 
masses will be in phase sync with each other. After passing the 1st mode of vibration the masses follow 
different phase degrees.  

 
 



 
 
 
 
 

Passive case 

 
 
 
 
 
 



 
 
 
 

Active case 




