
ABSTRACT 

Numerical Interpolation and Data fitting are fundamental aspects in scientific computing in order to 
turn the data points into meaningful functions that can later be used to deduce important patterns 
and observe trends. Interpolation schemes are used in order to approximately fit the discrete set of 
points in a polynomial which can then be differentiated or integrated in accordance to the 
constraints and conditions required. One of the objectives of using interpolation methods is to not 
only fit these discrete points but to also to see that the errors in the approximately fitted data is 
minimum. This is ensured by Least -Square approximation methods. In this project, we are using 
piecewise cubic polynomial interpolation approach. The interpolation polynomial using this method 
is smooth, second-order differentiable and converges to a decreased actual value on increasing the 
number of data-points, unlike the polynomial interpolation where the errors and oscillations of the 
interpolant increases. We are also testing the numerical accuracy of the written code by analyzing 
the Runge function tested for a set of 5, 9, 17 and 33 equidistant points. To depict the reduction of 
error with increasing the number of equi-spaced points, we are plotting the logarithm of L2 error 
against the logarithm of length of subinterval. The program is then extended to a problem of 
parametric cubic spline which has repeated abscissa and ordinates which is expected to generate a 
circle of unit radius 9 points. 

I. DESCRIPTION OF METHODOLOGY

Here, we want to use the spline which should have a global smoothness property 
with Not-A-Knot condition. Considering (n+1) data-points which form (n) sub-intervals over 
the given range of data-sets, each sub-interval has an estimation of a cubic polynomial 
passing through it which will be given by: 

si (x) = ai + bi (x − xi ) + ci (x − xi )2 + di (x − xi )3, {xi  ≤ x ≤ xi+1}

From this equation, we have ‘4n’ constants which will require ‘4n’ set of equations. The 
interpolant passes through each and every given data-points thus generating 2 equations per 
interval, hence ‘2n’ equations in total. Since the Cubic splines are 2nd order differentiable and 
that gives ‘2(n-1)’ equations more.  The remaining two equations are derived from the global 
smoothness property of Not-A-Knot condition. 

A. Formulation of Cubic Spline

The following steps are followed to approximate a cubic spline. 
We take the first and second derivative of Equation 8, we have; 

𝑠𝑠”𝑖𝑖 (x) = bi + 2ci (x − xi ) + 3di (x − xi )2 

Let ‘h’ denote the length of each subinterval given by the formula; 

hi  = xi+1 − xi , i = 0, 1, ....n-1. 



The first set of conditions for each interval is: 

si (x) = f (xi ) → a(xi ) = f (xi ) 
 

si (xi+1) = f (xi+1) → ai + bi hi + ci h2i + di h3i  
 

bi + ci hi + di hi = f [xi , xi+1] , i = 0,1..n-2 
 

where, f [xi , xi+1] is the Newton’s divided difference. 
The first and the second derivative conditions give, 

 

s’i (xi+1) = s’i+1(xi+1) → bi + 2ci hi + 3di h2i = bi+1 , i = 0,1...n-2 
 

s”i (xi+1) = s”i+1(xi+1) → ci + 6di hi = ci+1 , i = 0,1...n-2 
 

Hence, the coefficients bi and di can be written as: 
 

bi = f [xi , xi+1] −hi(ci+1 + 2ci )/3, i = 0,1, ...n – 1 
 

di = {ci+1 – ci}/3hi 
 

and rearranging the above gives; 
 

hi−1ci−1 + 2(hi−1 + hi )ci + hici = 3(f[xi,xi+1] - f[xi-1,xi]), i = 1, 2, …, n-1 
 

B. Not-A-Knot Condition 
 
Constructing a Not-A-Knot conditioned cubic spline will close this system of equations. 
However, we need two more equations that we will get from the global smoothness criteria. 
The not-a-knot condition states that the third derivative at the first two and the last two 
intervals are equal, which says that  

s′′′0(x1) = s′′′1(x1), and  
s′′′n-2(xn-1)=s′′′n-1(xn-1).  

 
These two conditions lead to the following two extra equations 

 
d0=d1, and dn-1=dn-2 

 
On solving for co & cn we obtain the following: 
 

c0  = {(h1 + h0 )c1 − h0c2}/h1 , 
cn  = {(hn−1 + hn−2 )cn−1 − hn−1cn−2}/hn−2 



 

{(h1 + h0 )(h0 + 2h1)}. c1 /h1 + {(h1 + h0 )(h1 � h0 )}. c1 /h1 = r1 ; 
 
 

{(hn−2 + hn−1)(hn−2 − hn−1)}. cn−2 /hn−2  
+ {(2hn−2 + hn−1)(hn−1 + hn−2)}. cn−1 /hn−2 = rn-1 

 
Above equations are handy to solve for the tridiagonal matrix and ultimately reach to the 
values of coefficients ci . 
 
C. Interpolation Error 
 
We should expect some errors to persist in the interpolated polynomial which is given by; 
 

e = ∫Ii {Pi (x) − f (x)}dx 
 
In order to evaluate this integral, we use Gauss Quadrature 4-point integration scheme. Since, 
the estimated polynomial is cubic, we can use 4 points to exactly determine the integral. The 
Gauss point formula and the Gauss points and weights are as listed in the table below. 
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Gauss Points { ξi } weights { wi } 
-0.8611363116 0.3478548451 
-0.3399810436 0.6521451549 
0.3399810436 0.6521451549 
0.8611363116 0.3478548451 

 
Also, we have computed the L2 norm of the error and plotted the log-log plot of the error and 
length of sub-interval. Subsequently, using least squares a linear fit is created to approximate 
the order of accuracy from the slope of the line. In the above equation, m is the order of 
accuracy that we are supposed to obtain as ‘4’. 
 
 
 
 

 
log( IIeII2 ) = c  +  m  log(h) 

 
The spline construction and the error computation has been done in MATLAB, the programs 
for which are attached next. The next section shows how to implement MATLAB algorithm 
to approximate a cubic-spline. 

 



clc;clear all

points = 100;
number = points + 1; %Number of data points (xi,yi) for i = 0,1,..,number-1

%% Taking examples of function f(x)= y = x^2 OR  y = 1./(1 + 25(x)^2);
x = 0:0.1:10; %Equal-spaced knots / Points
y1 = (x).^2; %Sample function for Question - 1
% y1 = 1./(1+ 25*(x1).^2); %Runge-phenomenon function for Question - 2

figure(1)
clf
grid on
plot(x,y1);title('Actual analytical function plot of (x) vs f(x)');

% Spline Interpolation method to evaluate same function f(x) = y = x^2
n = length(x);
x_range = [0 10];
xi = equal_sub_int(x_range,number);% .m file to get equal subintervals
xi = xi(:);

h = h_func(xi,number); %. m function file to calculate hi = x(i+1)-x(i)
A = CoefficientMatrix(h);%.m function file to get coefficient matrix in 'c'
r = zeros((number-2),1); % RHS of the eqn : A*c = r
% Calculating RHS Vector;
for i = 1:(number-2)
 r(i,:)= 3*((funct_of_x([xi(i+1),xi(i+2)]))-(funct_of_x([xi(i),xi(i+1)])));
end

X = For_Inverse(A,r);%. m function file to obtain solution of matrix system.
C = X(:); % values of coefficients 'c' except first and last

C_FirstRow = ((h(2) + h(1))*C(1) - h(1)*C(2))/h(2);

C_LastRow = ((h(length(h)-1) + h(length(h)-2))*C(length(h)-2)...
- h(length(h)-1)*C(length(h)-2))/h(length(h)-2);

% Stacking the results
CE= [C_FirstRow;C;C_LastRow]; % coefficient 'c' of cubic polynomial

AE = []; % vector AE is the coeffiecient 'a' of the cubic polynomial
for i = 1:number-1
  AE(i) = y1(i);
end
AE = AE(:);

DE = zeros((number-1),1);
BE = zeros((number-1),1);
for i = 1:(number-1)
    DE(i) = (CE(i+1) - CE(i))/(3*h(i));
    BE(i) = funct_of_x([xi(i),xi(i+1)]) - (h(i)/(3))*(2*CE(i) + CE(i+1));
end

BE = BE(:); %vector BE is coeffiecient 'b' of the cubic polynomial
DE = DE(:); % vector DE is the coeffiecients 'd' of the cubic polynomial 
CE = CE(1:length(CE)-1);

MATLAB Program to implement cubic spline interpolation using ordered 
discrete observation knots which has 'not-a-knot' boundary conditions.



V = [];  %V is the complete cubic polynomial equation for x(i)=<x<=x(i+1)
for i = 1:n
  for j = 1:number-1
    if ((x(i) >= xi(j)) && (x(i) < xi(j+1)))
   %using relation: Si(x)=ai(x - xi) + bi(x-xi)^2 + ci(x-xi)^3 + di(x-xi)^3

S = AE(j) + BE(j)*(x(i) - xi(j)) + CE(j)*(x(i) - xi(j))^2 ...
+ DE(j)*(x(i) - xi(j))^3;

V = [V; S];
    end
  end
end
% Stacking last value of y1 manually since it is not computed in the loops.
V = [V;y1(length(x))];

figure(2)
grid on;hold on;plot(x,V,'r');
title('Cubic Spline Interpolation function plot of (x) vs f(x)');

Results:

The plots obtained are displayed 
on the right. On comparison, the 
plot traced through Cubic Spline 
Interpolation program is similar 
to the one obtained from 
Analytical function plot.

Since we are employing 'not-a-
knot' boundary condition, the 
Interpolated and Analytical plots 
will converge for any number of 
observation knots selected. 

For the sake of study, in this 
question the equation studied is 
f(x) = x2 .



     % RHS of the coefficient matrix system
    r(i,:) =  3*((funct_of_x([x2(i+1), x2(i+2)])) - (funct_of_x([x2(i), x2(i+1)])));    
end

X = For_Inverse(A,r); %.m file to compute inverse and solve matrix system.
C = X(:);

C_FirstRow = ((H(2) + H(1))*C(1) - H(1)*C(2))/H(2);

C_LastRow = ((H(length(H)-1) + H(length(H)-2))*C(length(C)) - H(length(H)-1)*C(length(C)-1))/H
(length(H)-2);
CE = [C_FirstRow;C;C_LastRow]; % Stacking results

AE = myfun(x2);
AE = AE(:);
AE = AE(1:length(AE)-1);

DE = zeros((number(U)-1),1);
BE = zeros((number(U)-1),1);
for i = 1:(number(U)-1)    
    DE(i) = (CE(i+1) - CE(i))/(3*H(i));    
    BE(i) = funct_of_x([x2(i),x2(i+1)]) - (H(i)/(3))*(2*CE(i) + CE(i+1));
end

BE = BE(:);
DE = DE(:);
CE = CE(1:length(CE)-1);

V = [];
for i = 1:n    
  for j = 1:number(U)-1
     if ((x1(i) >= x2(j)) && (x1(i) < x2(j+1)))

S = AE(j) + BE(j)*(x1(i) - x2(j)) + CE(j)*(x1(i) - x2(j))^2 + DE(j)*(x1(i) - x2(j))^3;
V = [V; S];

     end

MATLAB Program to observe Runge-Phenomenon, plotting the L2 error between 
Interpolating Cubic spline Polynomial and Actual Analytical Runge function, 
and also achieving the line of best-fit that represents the 4 points.

clc;clear all

number = [5 9 17 33];
x1 = -1:0.01:1;
y1 = myfun(x1);

%% Implementing Cubic Spline Interpolation 
n = length(x1);
h = zeros(4,1);
e2 = zeros(4,1); % error
for U=1:length(number)
xrange = [-1 1];

x2 = equal_sub_int(xrange,number(U)); 
x2 = x2(:);

%% Solving the system of co-efficient matrix
H = h_func(x2,number(U));
A = CoefficientMatrix(H);
r = zeros((number(U)-2),1);
for i = 1:(number(U)-2)    



  end    
end
V = [V; y1(length(y1))];

figure(U)
grid on;
hold on;
plot(x1,y1);
plot(x1,V);
legend('Actual Runge-Function Plot','Plot from Cubic Spline Interpolation')
xlabel('Observation points (x)');ylabel('Cubic Spline y = f(x)');hold off;

%% Gauss Quadrature Integration for 4 points to obtain L2_error.
SE = CubicSplPolynml(AE,BE,CE,DE,x2);
% For 4 number of points, there are 4 values of weights 'w' & nodes 'Kzi'
n_kzi = 4; % number of 'kzi' - nodes 

% Weights 'w' & Nodes 'Kzi' for 4 points are;
w = [0.3478548 0.6521452 0.6521452 0.3478548]';
Kzi = [-0.86113631 -0.33998104 0.33998104 0.86113631]';

Xx = zeros(n_kzi,1);
F = zeros(n_kzi,1); F1 = zeros(n_kzi,1); F2 = zeros(n_kzi,1);
Vv = zeros(n_kzi,1); 
product = zeros(n_kzi,1);
summ = 0;
for i = 1:number(U)-1

    for j = 1:n_kzi
    var1=(x2(i+1)-x2(i))/2;
    var2=(x2(i+1)+x2(i))/2;
    f1=(var1*(1/sqrt(3))+var2);
    f2=(var1*(-1/sqrt(3))+var2);
    error(j) = var1*((((1/(1+(25*(f1^2))))-(AE(i)+(BE(i)*(f1-x2(i)))+(CE(i)*((f1-x2(i)).^2))+(DE
(i)*((f1-x2(i)).^3))))^2)+(1*((1/(1+(25*(f2^2))))-(AE(i)+(BE(i)*(f2-x2(i)))+(CE(i)*((f2-x2(i))
^2))+(DE(i)*((f2-x2(i)).^3))))^2));
    summ = summ + error(j);
    end
 end
summ;

e2(U) = log(sqrt(summ)); % L2 error formula

h(U) = mean(H,'all');
end

log_of_error = (e2);
log_subinterval = log(h);

%% Linear Least Squares Fitting procedure

Avg_sub_int = mean(log_subinterval,'all');
Avg_log_error = mean(log_of_error,'all');

% Calculation of slope 'm' of the line of best fit.
l1 = ((length(log_subinterval)).*sum((log_subinterval).*(log_of_error)));



l2 = ((sum(log_subinterval)).*(sum(log_of_error)));
l3 = ((length(log_subinterval))*(sum((log_subinterval).^2)));
l4 = ((sum(log_subinterval)).^2);

m = (l1 - l2)/(l3 - l4)  %% Slope of the line
% % now we compute the intercept value
intercept = Avg_log_error - (m*Avg_sub_int);

LogH_plot = linspace(log_subinterval(1),log_subinterval(length(log_subinterval)),100);
LogH_plot = LogH_plot(:);

LogError_plot = [];
Eqn_Line = 0;
for i = 1:length(LogH_plot)
    Eqn_Line = m*LogH_plot(i) + intercept % y = mx + C
  LogError_plot = [LogError_plot; Eqn_Line];
end
% Plot of log||e2||-vs-log||subinterval_size||, scatter plot of those 4 pts
figure(5)
hold on;
scatter(log_subinterval,log_of_error,'+');
plot(LogH_plot,LogError_plot)
xlabel('Log(Length of Subinterval)');ylabel('Log(L2 error)')
title('Plot of L2 error')
legend('Data points','Line of best-fit')





From observation of the L2 error plot versus the log of subintervals, we can estimate the slope of a line that 
exist if a linear fit is estimated to represent all these data point. From the order of accuracy, the 
value of slope is expected to be 4. However, due to ill-conditioned linear system of equations and errors in 
estimation of Gauss-Quadrature 4-point Integration, the slope of the best-fit line turns out to be 3.61 which 
can be considered to be close to 4.

Hence, it can be said that the line of best-fit fairly approximate these 4 set of data-points.
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clc;clear all
clf
points = 16;
number = points + 1;

phi = [0:pi/100:2*pi];
x1 = cos(phi);
y1 = sin(phi);

V1 = []; V2 = [];
V1last = 0; V2last = 0; % because the f(phi) at start & end points are '0'.
n = length(phi);

phi_b = 0;
phi_a = pi/4;
phi_range = zeros(8,2); phi_i = zeros(8,number);
for j = 1:8

  phi_range(j,:) = [phi_b phi_a];
  phi_i(j,:) = equal_sub_int(phi_range(j,:),number);

  phi_b = phi_b + pi/4;
  phi_a = phi_a + pi/4;

  phi_i = phi_i(j,:);
  H = h_func(phi_i,number);
  A = CoefficientMatrix(H);
  r = zeros((number-2),1);
  for i = 1:(points-1)
    % 'r' is the RHS vector to coefficient matrix system,
    % 'funct_of_x' = .m file to compute f(x), like the Runge-function equation
    r(i,:) =  3*((funct_of_x_Try([phi_i(i+1), phi_i(i+2)])) - (funct_of_x_Try([phi_i(i), phi_i
(i+1)])));

  end

  X = For_Inverse(A,r);
  C = X(:);

  C_FirstRow = ((H(2) + H(1))*C(1) - H(1)*C(2))/H(2);

  C_LastRow = ((H(length(H)-1) + H(length(H)-2))*C(length(C)) - H(length(H)-1)*C(length(C)-1))/H
(length(H)-2);
  CE = [C_FirstRow;C;C_LastRow]; % Stacking results

  AE1 = cos(phi_i); % representing xi = cos(phi(i))
  AE1 = AE1(:);
  AE1 = AE1(1:length(AE1)-1);

  AE2 = sin(phi_i); % representing yi = sin(phi(i))  
  AE2 = AE2(:);  
  AE2 = AE2(1:length(AE2)-1); 

  DE = zeros((number-1),1);  
  BE = zeros((number-1),1);  
  for i = 1:(number-1)

MATLAB Program to construct cubic spline for a set of data points which 
repeat on the abscissa and ordinates 



    DE(i) = (CE(i+1) - CE(i))/(3*H(i));
    BE(i) = funct_of_x_Try([phi_i(i),phi_i(i+1)]) - (H(i)/(3))*(2*CE(i) + CE(i+1));
  end
  BE = BE(:);
  DE = DE(:);
  CE = CE(1:length(CE)-1);

  for i = 1:n
    for j = 1:number-1

%V is the complete cubic polynomial equation for x(i)=<x<=x(i+1)
if ((phi_i(j) <= phi(i)) && (phi(i) < phi_i(j+1)))

% Spline 'S1' is for spline in 'x = cos(phi)';
% Spline 'S2' is for spline in 'y = sin(phi)';
S1 = AE1(j) + BE(j)*(phi(i) - phi_i(j)) + CE(j)*(phi(i) - phi_i(j))^2 + DE(j)*(phi(i) - 

phi_i(j))^3;
S2 = AE2(j) + BE(j)*(phi(i) - phi_i(j)) + CE(j)*(phi(i) - phi_i(j))^2 + DE(j)*(phi(i) - 

phi_i(j))^3;
V1 = [V1; S1]; 
V2 = [V2; S2];

end
    end
  end
end
V1 = [V1;x1(length(x1))]; % Spline Polynomial for x = cos(phi - phi_i) 
V2 = [V2;y1(length(y1))]; % Spline Polynomial for y = sin(phi - phi_i)

figure(1)
subplot(2,1,1)
grid on;hold on;% Plotting splines in x = cos(phi)
plot(phi,x1);
plot(phi,V1);title('Actual & Interpolated Spline plot for x = cos(phi)')
hold off;legend('Actual','Interpolated')

subplot(2,1,2)
grid on;
hold on;  % Plotting splines in y = sin(phi)
plot(phi,y1);
plot(phi,V2);title('Actual & Interpolated Spline plot for y = sin(phi)')
hold off;legend('Actual','Interpolated')

figure(2)
subplot(1,2,1)
plot(x1,y1);title('Actual plot of unit circle');
axis([-1.5 1.5 -1.5 1.5])
daspect([1 1 1])

subplot(1,2,2)
grid on;
hold on;
plot(V1,V2,'r',x1,y1,'--c') % Plotting unit circle
hold off;title('Actual & Interpolated plot of Spline of unit circle')
axis([-1.5 1.5 -1.5 1.5]);legend('Interpolated','Actual')
daspect([1 1 1])



Results obtained for n = 9 observation points



Results obtained for n = 17 observation points



Results obtained for n = 33 observation points





    xa = [xa, x(i)];          % Big value
    xb = [xb, x(i-1)];        % Small value
end
    % The equation below is the equation of 'yi' which is f(x). It needs to
    % be changed as per the question being studied.
    f1 = equation(xa); 
    f2 = equation(xb);
    f = (f1 - f2)/(x(length) - x(1)); % divided difference formula
end

Appendix
All the function files (.m files) used in the programming of Cubic spline 
interpolation questions are detailed out below; 

1.) "funct_of_x" computes the divided difference. 

function f = funct_of_x(x)

%% Test equations to test for Question - 1.
equation = @(x) (x).^2; % Sample equation to test the program
%% Runge - phenomenon equations to test for Question - 2.
% equation = @(x) 1./(1+ 25*(x).^2); % Runge-phenomenon for Question - 2 
%% Obtaining the divided difference. 
x = sort(x);
length = numel(x);   
xa = [];
xb = [];
for i = 2:length

2.) "myfun" comprises of the Runge-Phenomenon equation. 

function y = myfun(x)

x = x(:)';
y = 1./(1 + 25*(x.^2));
end

3.) "For_Inverse" Gauss-Seidel Method to solve linear system of equations. 

% clc;clear all %% Gauss-Seidel Method to solve linear system of equations
function x = For_Inverse(A,R)

x=zeros(length(A),1);n = size(x,1);
for iteration_count = 1:20
x_old = x;
  for i = 1:n
    sum1 = 0;sum2 = 0;
    for j = 1:i-1

if j~=i
sum1 = sum1 + A(i,j)*x(j);
end

    end 
for j = i+1:n
sum2 = sum2 + A(i,j)*x_old(j);

end
x(i) = -(sum1 + sum2 - R(i))/A(i,i);

  end
end
end



4.) "h_func" computes x(i+1) - x(i) 

function h = h_func(x,number)

h = [];
for i = 1:(number-1)
  hi = x(i+1) - x(i);
  h = [h, hi];
end
end

5.) "equal_sub_int" provides the equally spaced subintervals or step-size. 

function X = equal_sub_int(xrange,number)

X = xrange(1);

 for i = 1:(number-1)
   xtemp = xrange(1) + ((xrange(2) - xrange(1))/(number-1))*i;
   X = [X,xtemp];
 end 
end

6.) "CubicSplPolynml" formulates the cubic polynomial for spline. 

function S = CubicSplPolynml(A,B,C,D,x)

xsort = sort(x);
xsort(:);
A = A(:); B = B(:); C = C(:); D = D(:);
syms x;
len = length(A);
for i = 1:(len)
  S(i) = A(i) + B(i)*(x - xsort(i)) + C(i)*(x - xsort(i)).^2 + D(i)*(x - xsort(i)).^3; 
end
S = S(:);
end

7.) "CoefficientMatrix" develops Coefficient matrix [A] in [A][c] = [r] 

function A = CoefficientMatrix(h)

h = h(:)'; 
sz = length(h)-1;

%% 1st & 2nd element of 1st row
A = zeros(sz);
A(1,1) = (h(2) + h(1))*(h(1) + 2*h(2))/h(2);
A(1,2) = ((h(2) + h(1))*(h(2) - h(1)))/h(2);
%% Second Last & Last element of last row
A(sz,(sz-1)) = ((h(sz) + h(sz+1))*(h(sz) - h(sz+1)))/h(sz);
A(sz,sz) = ((2*h(sz) + h(sz+1))*(h(sz) + h(sz+1)))/h(sz);

%% middle elements on the tri-diagonal
middle = zeros((sz-2),3);
for i =1:(sz-2)

    middle(i,:) = [h(i+1), 2*(h(i+1)+h(i+2)), h(i+2)];
    A(i+1,i:i+2) = middle(i,:);

end   
end



function f = funct_of_x_Try(phi)
phi = sort(phi);
% phi = 0:pi/4:(2*pi);
lent = numel(phi);
phi_a = []; phi_b = [];
for i = 2:lent
  x(i) = cos(phi(i));
  phi_a = [phi_a, phi(i)]; % Big value
  phi_b = [phi_b, phi(i-1)]; % Small value
end 
  %y(i) = sin(x(i));
  f1 = sin(phi_a);
  f2 = sin(phi_b);
  f = (f1 - f2)/(2*pi);
end

8.) "funct_of_x_Try" used in last problem for plotting unit circle spline




