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ABSTRACT 
 This project aims to study the modal vibration characteristics of wings of a known 
aircraft model AIRBUS A380-800. A comparative study has been made using two methods; 
Finite Element Simulation, and Analytical Numerical approach using Rayleigh-Ritz 
approximation. The aim of this project is to validate or disprove the results of vibration 
analysis obtained from FEM ANSYS simulation with that of Numerical Method. The root air-
foil profile is suspected to be a Supercritical series air-foil, the coordinates of which have 
been adopted from online air-foil plotter tool. Many wing structural details have been 
relaxed and suitable geometric assumptions have been taken in order to ease the process 
of result evaluation. Finally, it has been proved that the results from Rayleigh-Ritz 
approximation method are not in agreement with results from Finite element simulation 
through ANSYS modal analysis. 

I. INTRODUCTION 
 The modal analysis of any structure experiencing vibration, especially transverse 
vibration gives us the vibrating frequency of each mode which that system undergoes 
progressively. A mode of vibration can be referred as a pattern of motion in which each 
component in the oscillating system produce similar sinusoidal motion with same frequency 
& fixed phase lag relations. In-case if the vibrating structure has its first resonant frequency 
as the rigid body mode itself, we would find that that frequency value is 0 Hz. But since an 
aircraft wing is not one continuous structure in real application, the rigid body frequency is 
normally not the first frequency met. Aircraft wings are usually thin-walled, non-uniform and 
discontinuous members which collectively make the wing look swept backward or in few 
specific cases, forward. Also, there are intermittent ribs and spars running across and 
throughout the wing which serves as the framework of the structure. On top of that, there 
are prime-movers, actuators and strainers and all other sorts of fuel handling mechanisms 
which are all essentially located inside the wing interior hollow spaces. A full-blown 
engineering simulation is thus limited by CAD model design challenges. Also, one would not 
be able to account for flow induced vibro-acoustic sound propagation and machine-produced 
vibrating effects on the wing without the help of proper probing tools and without replicating 
actual action of an object flying through the fluid medium (air). However, to consider the wing 
as a continuously running solid mass member is one allowable assumption. The aircraft wing 
under study is of Airbus A380-800. Being a proprietary technical information, Airbus is 
discreet about the type of air-foil series they are using. However, it is suspected to be from 
the Supercritical II series profiles, typically a blend of NASA SC(2) - 0610 for the root and NASA 
SC(2) - 0606 for the tip [1]. I have adopted the profile geometry; the x vs y(x) coordinates of 
the air-foil contour from airfoiltools.com. As to the discussion above, there are three different 
models which can be assumed to represent as a wing in the analysis. They are; a 1D beam 
element, a 2D plate element, and a 3D solid element. The Euler-Bernoulli beam theory is the 
correct representation of the problem since we are assuming that our wing is a cantilevered 
beam under transverse vibration due to lateral air flow. 
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II. CAD MODEL DESCRIPTION 
 To make a 3D CAD model of the wing, we need to have air-foil contour coordinates. 
As mentioned before, the NASA SC(2) 0610 & 0606 is used directly by importing the 
coordinates as .dat file from airfoiltools.com. The figure below represents the profile section  

Figure 1. Air-foil contour of AIRBUS A380-800  
 
Details about the air-foil characteristics are as follows; 

a.) Max thickness - 10 % of the mean chord-length ‘c’ at 38 % ‘c’ from the leading edge.    
b.) Max camber - 1.8 % of the mean chord-length ‘c’ at 82 % ‘c’ from the leading edge.  

The 3D CAD model of the wing prepared is non-parametric and includes no aero-derivative 
information. The process to achieve such continuous looking solid wing form is laborious.  

It either requires a parametric sweep relation of every guide curve that can be distinctively 
set-up for the leading edge, trailing edge, and trailing edge back-sweep angle. The standard 
engineering practice is to first create ribs and spars that support the frames and plates of the 
aircraft wing. Then to reduce the mass of those structures and make space for hollow cavity 
where other prime-movers will be fitted. And then, the outer panel frames are attached and 
extend till the tip according to how guide splines dictate. A standard wing of an Airliner has a 
dihedral angle already provided at the root of the wing which is attached to the wing box. 
This is done to give a pre-tension kind of effect so that when the aircraft actually starts to 
observe flutter in turbulent airflow, it performs better in the roll conditions and don’t suffer 
excessive bending and/or limit-cycle oscillations.  

 The other method is to use the engineering drawing views already published by AIRBUS 
Aerospace Company and generate a precise 3D model from the outlines of 2D drawing. This 
is not a standard engineering practice though; however, it simplifies our analysis. The wing 
properties as outlined by AIRBUS A380-800 Aircraft characteristics manual are; 

Table 1. List of geometric parameters that describe the wing 

Parameter Value 

 

Parameter Value 
Wing Span 261.8 ft Wing Sweep Angle 33.5 o (backward) 

Mean Length 239.5 ft Taper ratio 0.26 
Wing Area 9100 sq. ft t/c ratio  0.08 

Aspect Ratio 7.53 Mean Aerodynamic 
Centre location 

60 % length from 
tip  
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Figure 2. 3D CAD model precisely representing the wing of A380-800. 
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For each engineering analysis, the following material properties were assigned] for the wing; 

Engineering Material 

 

High Strength Aluminium Alloy AL – 7075 
Material Density 79.5703 Kg/cu. ft 
Youngs Modulus 71.78 GPa 
Yield Strength Syt 103 MPa 

 
The 7075 – Aluminium Alloy is known for its use in high stressed application mainly because 
of its high ductility and good fatigue resistance characteristics. Thus, its main use in A380 is 
in airframe construction.  

The discussion below will detail out the construction of this CAD model and will also show 
why it correctly represents the actual Airbus A380-800 wing with supercritical design. 

- When not having parametric relations that can approximate splines or curves for the 
leading edge or trailing edge, we can make use of the Technical Drawings which contains 
front, and side profile of the wing.  

• In any commercial CAD package, we can start-off by selecting two intersecting 
planes. Typical choice of the planes be made according to the view which will be 
traced from the drawing.  

• For example, if the air-foil profile is required to be traced, then I should better 
draw it as a side-view rather than as a front view. 

- Having made the choice of the planes, we now actually require an intersecting edge. 
• This is the edge where the two views of the part (side view and front view) 

intersect. Take again the example of the air-foil profile. At the leading-edge tip 
viewed from the side view, we will place the root region of the wing which is 
connected to the wing-box as seen from front, i.e. front view of the wing. But this 
front projected view will be aligned 90o upwards. 

- Swivelling the planes, one will be able to clearly see how the wing’s side view and front 
view gets spatially attached. The next task will be to mark a start point. 

• The start point is required because, it will help in initiating the tracing process of 
the curve. We will draw splines or straight lines as fit over the projected view from 
the drawing itself. This is sort of following the outline and making a new drawing. 

• The other curve to be traced is in other plane at a different orientation. It gives 
us a general imagination of how the component is going to get developed. 

- For curves that can only be replicated by using the spline lines, one must take care that 
the curve is smooth. For that the curvature comb of the spline must be smooth and not 
abrupt at any place. The commercial package SolidWorks has a tool that monitors it well. 

• If drawing the upper surface of the air-foil, for example, use multiple points in 
between the start and end point. This is because a single start and end point will 
not possibly make the upper surface. Multiple points in-between will ensure the 
smoothness of the curve criteria.  

- At the end, when all the profiles have been traced, we can use the leading edge & trailing 
edge splines as our guide curves for the profile sweep feature. 
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Following the above procedure is easily ridden with possibility of dimensional errors since the 
curve accuracies cannot be commented. However, after the 3D CAD model has been made, 
we can make a quick check of the model. Since we are aware that A380-800 has a supercritical 
wing profile, we can validate whether our model will be performing as a supercritical air-foil 
or not. A supercritical air-foil profile is a strategic design that ensures that the wave drag onset 
is delayed when in transonic speed range. A Computational fluid dynamics simulation may 
validate our model. 

To have a better understanding, I have made use of ANSYS CFD Post to analyse flow dynamics. 
For this, the Spalart-Allmaras viscous model which employs RANS; short for Reynolds-
Averaged Naiver-Stokes Equation method which requires only 1 equation to be solved [2]. 
The transonic flight speed of about 0.89 Mach (302.6 m/s) are more characteristic of this 
aircraft at its maximum cruise altitude of 43,000 feet. With the use of a supercritical air-foil, 
we must be able to see a shock region getting induced at near the tail-section which will be 
indicative of supercritical profile design. The mesh that was generated had 177692 
tetrahedral elements constructed by 45345 nodes. 

Figure 3. CFD analysis using CAD model displaying supercritical properties of the air-foil 

That small red-yellowish peak formed at the root of the wing suggests the location of region 
where the MACH number of the flow is 1 due to the selected Critical Mach number of 0.89. 
This CFD result also gives one interesting observation, that towards the tip of the wing, the 
flow is merely subsonic and there is flow separation surface observed. And the leading edge 
towards the tip of the wing is having near-sonic conditions. These characteristics are 
guaranteed by the nature of supercritical air-foil profile. Hence, this result serves as partial 
validation that our 3D CAD Model is depicting the characteristics of the A380-800’s wing form. 

 

Shockwave region location 
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III. FEA METHODOLOGY 
 The finite element discretization will break the continuous beam of our wing into 
several decoupled systems. It becomes easy to translate the boundary conditions, dynamic 
conditions and transient responses of the wing into end effect, which is to observe the pattern 
of vibration. Here I have used ANSYS’s Modal analysis toolbox to analyse the continuous 
system undergoing free vibration. ANSYS at its background uses Euler - Bernoulli’s theorem 
to solve for the modal frequencies of the system under transverse vibration.  

 

 

 

 

 

 

 

For a simple cantilever beam as shown above, the natural frequency can be found out by the 
formula [3, p. 536]: 

2
4( )n n

EIL
mL

ω β=  

where, nω  (RPM) is the natural frequency of the oscillation at different modes of vibration; 

  I  (lbm.ft2) is the Moment of Inertia in the x – direction; 

 nLβ  are the dimensionless weighted natural frequencies which are different for 
different boundary conditions (at the ends) of the vibrating member. 

The Modal Analysis toolbox in ANSYS requires only a few assignments after which it can 
simulate the real vibration motion, hence showing us procedure to obtain the mode shapes 
and consequently the modal frequencies are as follows; 

- Our CAD model requires to be assigned material properties which will mainly be the 
Young’s Modulus, the Poisson’s ratio, and the density. The material 7075 Aluminium alloy 
is not readily available in the ANSYS’s material library. Hence it needs to be defined in 
the Materials library with all its structural and thermal properties value. 

- After defining the materials in the library, we need our 3D CAD model to be imported in 
the setup of the Model Analysis modeler. We must ensure beforehand that our 
dimensions are in feet, the same units of dimension that our CAD model has. Not setting 
the units beforehand might only bring error in scaling of our mode shape frequencies, 
although not altering its exact values. 

- An important step is to make the model realize the boundary conditions. Since its our 
assumption that the wing will behave as a cantilever, we are fixing the root-end of the 
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wing, thus constraining it’s all 6 D.O.Fs. Now that we have fixed one end, we must assign 
our newly created 7075 – Aluminium Alloy material again to the CAD model in the set-
up before we can jump to meshing of the model.  

- And now we must mesh the model with default settings that the ANSYS processor 
suggests. We may refine the meshing to achieve more finer answer, however it’s a 
redundant step.  

- Having done the meshing step, we can go to the solutions tabs and press ‘solve all’. This 
will generate a set of frequencies which will be visible at the centre-bottom part of the 
result screen. We can head straight there and select all the frequency bars and ask it to 
give a modal report.  

- Thus, we now have a set of frequencies along with a movement pattern which simulate 
the motion of the member under that frequency. We only concern ourselves with first 3 
modes of vibration. Though, in practice, the aircrafts never observe their second or third 
modal frequency in their operational life.    

 

            
  Figure 4. Fixed boundary at the root of the wing (A), Meshed model (B)   

 

A 

B 
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Figure 5. 1st, 2nd, 3rd modal frequencies picturized as displacement from mean position 

The first three frequencies are; 

1f  = 1.4611 Hz, 

2f  = 3.9516 Hz, 

3f  = 8.1431 Hz. 

- In all three images, we see that according to the deformation contour chart, the region 
near the root of the wing observes lowest stress due to total deformation. This result 
verifies with the actual flight wing performance. In the actual flight conditions, there is very 
less structural deformation of the wing near the root region. All the aircraft wings have a 
region up-to certain length along its span that produces or contributes maximum lift. This 
region is located at   35 - 40 % of span length from the root. Up-to this length, stresses 
remain almost negligible as can be depicted by the FE model above. 

- Another important phenomenon: Aeroelastic flutter is apparent at near the tip of the wing. 
It is the self-excited structural vibration which depends on flexural rigidity of the wing. 
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IV. RAYLEIGH-RITZ APPROXIMATION METHOD 
 The previous two methods relied on Euler-Bernoulli’s beam theory to perform modal 
calculations. Euler-Bernoulli’s beam theory uses system’s eigen functions to map the 
deflection and applied load in terms structures flexural rigidity. The Rayleigh-Ritz 
approximation method is different in that it uses energy-based modelling which uses calculus 
of variation given by Brachistochrone problem. This method makes use of Admissible shape 
functions / Trial functions which are defined different for different problems by the user [4, 
p. 794]. This is a sort of Finite element problem which can handle mixed system components 
having arbitrary shape and loading patterns.    

IV.A Methodology  

To derive the equation of motion using energy principle, the calculus of variation is applied 
first on a basic arbitrary volume Vs which undergoes small displacement in response to 
external applied forces. 

 
Figure 6. Arbitrary volume having applied forces on it. 

Here, u(x,t) = displacement vector of location x at time t.  
       Fj = generalized applied forces on the object 

The Potential energy (U) and Kinetic Energy (T) of the system is given by the formula [5, pp. 
714, 715]; 

{ }1
2

s

T
s s

V

U S C S dV= ∫   

  1 ( , ) ( , )
2

s

T
s

V

T u x t u x t dVρ= ⋅∫     

Where, S is the Strain vector written as a column, sC is the Elastic moduli matrix, ( , )u x t  is the 

displacement rate vector, ρ & sV are the density and volume of the arbitrary shape, respectively. 

Applying variational calculus to express External work extW due to External forces jf ; 

1
( , )

j

ext j j
j

W f u x tδ
=

∂ = ⋅∑   

We can express strain in the volume as the function of displacement given by; 
[ ]( , ) ( , )uS x t L u x t= ⋅   

Where, uL is the operator that performs spatial derivatives and relates displacements to strains. 
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Since our displacement is in terms of x & t, we can split it using separation of variables method 
and write it as a series solution with product of two separate variables 

( , ) ( ) ( )ru x t N x r t= ⋅∑  [5, p. 714]. Here, ( )r t is a time-based mechanically generalized 
coordinate, & ( )rN x is the positional function, also called as Set of admissible shapes 
functions. These admissible shape functions/trial functions have to satisfy a list of conditions 
[6, p. 35]; 
- The boundary conditions must be incorporated in the set by the shape function. 
- The shape functions must be a linearly independent set. 
- They must be m-1 times differentiable where m is the highest order derivative given in uL matrix. 

To ensure completeness in the solution, the shape functions must form a complete set. For 
our case which is a fixed-free end condition, the mode shape equation that satisfies the 
solution is given by [3, p. 536];  

1 2 3 4cos sin cosh sinhr n n n nN A x A x A x A xβ β β β= + + +  . 

The n  represents number of admissible shape functions included in the set. When substituted 
the ( , )u x t in the equation of strain, we get;  

[ ]( , ) uS x t L= ⋅ ( ) ( )rN x r t⋅  

( ) ( )rB x r t= ⋅  

The ( )rB x consists of the 1st derivatives of the shape functions. Plugging-in above relations, 
we have the potential energy as; 

{ }1 ( ) ( ) ( ) ( )
2

s

T T
r s r s

V

U r t B x C B x r t dV= ⋅∫  

Since, here the separated variable ( )r t is not dependent on volume of the structure, it can be 
pulled out of the equation. Therefore, the potential energy is rearranged to; 

{ }1 ( ) ( ) ( ) ( )
2

s

T T
r s r s

V

U r t B x C B x dV r t
 

= ⋅ ⋅ 
  
∫  

Similarly, Kinetic energy is;  
1 ( ) ( ) ( ) ( )
2

s

T T
r r s

V

T r t N x N x dV r tρ
 

= ⋅ ⋅ ⋅ 
  
∫   

In the above pair of equations, the bracketed terms are structure’s stiffness and mass 
matrices, respectively.  

We can also express the external work in terms of generalized forces as; 

1
( , )

j
T

ext j j
j

W u x t fδ
=

∂ = ⋅∑   

                      
1

( ) ( )
j

T T
r j j

j
r t N x fδ

=

= ⋅ ⋅∑   

This can be simply expressed in the form of multiplication of vectors up-to ‘j’ terms. This is 
expressed as given below. 
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= 

1

2

31 2 3( ) ( ) ( ) ( )
f

T T T T
r r r r j

B

j

f
f
fN x N x N x N x

f

 
 
 
   ∗   
 
  







 

Let the matrix that contains transpose of the shape functions in column be noted as ‘ fB ’. 

Therefore, the variational work can be written as ( )T
ext fW r t B fδ∂ = ⋅ ⋅  after replacing the 

matrix with fB . 

Our final step is to deduce the equation of motion since our energy terms are now ready. 
Therefore, we can easily utilize the Lagrange’s Method of first kind to substitute the 
displacement relationship in terms of mass and stiffness of the system [5, p. 714]. It is given 
by; 

i
i i

d L L Q
dt r r
 ∂ ∂

− = ∂ ∂ 
                      (Here, 

( )
ext

i
WQ
r tδ

∂
= ) 

Where, L T U= − , is called the Lagrangian. And the function iQ comprises of all the external 
or non-conservative forces on the system.   

The system that we derived is of the form of equation of motion that is familiar to us. The 
only difference is that the generalized coordinate is a time dependent and not space 
dependent. In the equation below, &s sM K are dynamic beam mass and stiffness matrices. 

( ) ( ) ( )s s fM r t K r t B f t+ = ⋅   

IV.B Extension to our problem 

 Using the strategy described above, we now convert it into our problem at hand. Since 
the aircraft wing in simple terms represents a fixed-free boundary condition, let us refer back 
to the simple cantilever beam model to understand the material deflection and strain 
directions. The beam is assumed to have isotropic material strain characteristics. 

 

Figure 7. Cantilever beam showing material deflection & strain directions 
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Let us define the material deflection in 1,2,3 direction of the structure and relate it to the 
corresponding strain; 

Material deflection vector, 
1

2

3

( , )
( , ) ( , )

( , )

u x t
u x t u x t

u x t

 
 =  
  

  

 
We are interested in the analysing the transverse vibration of the cantilever beam. Therefore, 
from the figure, we see that the transverse vibration is indicated by ( , )w x t . We can relate this 
transverse vibration to the material deflection in that axis direction given by 3( , ) ( , )w x t u x t= .  
And using Euler-Bernoulli Beam theory, we can also relate deflection & strain in one direction 
to the deflection & strain in the other direction. 

3
1

( , )( , ) d u x tu x t y
dx

= − ⋅   

Therefore, strain being the first derivative of displacement is given by;
2

31
1 2

( , )( , ) d u x td u x tS y
dx dx

= = − ⋅  

 
Strains of the other two directions are related by poisons ratio ν . Assuming the material is 
isotropic, the strain vectors can be represented in the matrix notation as; 

2

2

1 2

2 2
1

3 2
2

2
3

6

0 0

( , )
( , ) 0 0

( , )
( , )

( , )
0 0 ( , )

0 0 0( , )
0 0 0
0 0 0

dy
dx

S x t
dS x t y

u x tdx
S x t

u x tdy u x tdx

S x t

ν

ν

  
−  
                   = ∗                         

 
  





  

The strain terms 1 2 3, ,S S S  relate to longitudinal strains in 1,2,3 coordinate directions 

described in the figure. The strain terms 4 5 6, ,S S S  relate to shear strains in the structure. The 
central matrix which we find above is the differential operator matrix in which all the terms 
are 0 except three terms. The reason is that since we are interested to determine strains in 
all the directions in terms of displacement in transverse direction 3u , we have neglected all 
other expressions. Therefore, we can have the following simplification; 

1

2

3

1

( , ) 0
( , ) 0
( , )

( ) ( )
N

i i
i

u x t
u x t
u x t

x r tφ
=

 
      =         ⋅
  
∑
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Here, we have chosen to denote shape function with symbol rφ  instead of rN . And ( )r t  
continues to be the generalized coordinate. The shape function contains N number of terms, 
hence it forms a 3 x N matrix here; 

1

st th

0 0
( ) 0 0

( ) ( )

1 beam mode eshape N beam mode shape

r

N

x
x x

φ
φ φ

 
 =  
  
↓ ↓

  

  

  

  

Now, we define the rB  matrix for our case; 

22
1

2 2

22
1

2 2

22
1

2 2

( )( )

( )( )

( ) ( )( )

0 0
0 0
0 0

N

N

r u r N

d xd x
dx dx

d xd x
dx dx

B L x y d xd x
dx dx

φφ

φφν ν

φ φφν ν

 
 
 
 
− ⋅ − ⋅ 
 

= ⋅ = ∗  − ⋅ − ⋅ 
 
 
 
 
  

 

 

 

 

 

 

 

Now we can define our mass and stiffness matrices since all the elements necessary to 
define them are ready.  

• The mass matrix is then defined as [5, p. 715]; 

( ) ( )
s

T
s s r r s

V

M x x dVρ φ φ= ⋅∫  

With integration limits;  
/2 /2

/2 /2 0

( ) ( )
s

s

t w L
T

s s r r
t w

M x x dx dz dyρ φ φ
− −

 
= ⋅ 

 
∫ ∫ ∫  

• And the stiffness matrix is defined as [5, p. 715]; 

( ) ( )
s

T

s r s r s
V

K B x C B x dV= ⋅ ⋅∫   

With integration limits; 
/2 /2

/2 /2 0

( ) ( )
s

s

t w L
T

s s r r
t w

K E B x B x dx dz dy
− −

 
= ⋅ 

 
∫ ∫ ∫           

Here, the elastic moduli matrix sC  is essentially a scalar sE  since our problem is having the 
isotropic material. The limits of integration in &y z  directions are applied in-view from 
centroidal plane occurring at Mean Aerodynamic chord length from the root of the wing. 
However, the integration limit for x  direction should include the whole span of the wing.  
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Now we can plug the rφ  and rB  matrices in the dynamic mass and stiffness equations. We 
obtain the following forms for the mass and stiffness matrix; 

1 1 1/2 /2

/2 /2 0
1

( ) ( ) ( ) ( )
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The matrices above deliver overall property of the structure by including effects from discrete 
elements that these N shape functions divide it into. These matrices being N dimensional 
becomes difficult to compute by hand. Hence, we must utilize symbolic integration solver to 
obtain the multiplication results.  

We can choose to have an optional simplification in our calculation which is in relation to 
orthogonality of shape functions. We must realize that the mode shapes of have an arbitrary 
scale of representation. And often the shape functions selected to represent a beam are 
orthogonal, therefore, we can select the scaling factor such that [3, p. 538]; 
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This would mean that the on-diagonal elements would simply become 0. The only elements 
that would remain would be on the off-diagonal. This simplification would be equally 
effective, the only difference would be that the solution would need to include a greater 
number of terms in-order to converge to the result. 

Since our case study is on free-vibration characteristics, we must equate the modal equation 
to zero by considering the Force input absent. That is ( ) ( ) 0s sM r t K r t+ = .  

Having the s sM and K  terms ready, we can obtain the ratio of stiffness to mass which is 
essentially the circular frequency squared (Rayleigh’s quotient), given by the formula;  
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A reasonable question is that why would any selected shape function make the results 
ultimately converge. The explanation for it lies in the error minimization approach that is 
offered by Brachistochrone Problem. The inclusion of large number of terms in the 
formulation minimizes the error between true result and the arrived result.  

Our point of study was vibrational displacement that the structure is undergoing in the 
transverse direction. For that we have chosen ( , )w x t  which we again broke down to product 
of two distributed parameters system; ( , ) ( ) ( )ru x t x r tφ= ⋅ . With the above formulation, we 
also need to supply a few more details which are essential information to solve a problem 
involving Distributed Parameters System. Those are ‘weighted natural frequencies’ nlβ  and 

‘mode shape coefficients’ nσ ,  which are specific for particular boundary-condition type. With 
increasing number of terms in the shape functions, the values of these terms either become 
‘1’ or a direct multiple of that number of terms in the shape function. The table list down the 
weighted frequency and coefficient values below; 

Table 4. nlβ  &  nσ  values for N = 1 to 5 and N > 5 for a fixed-free beam condition [3, p. 539] 

 N = 1 N = 2 N = 3 N = 4 N = 5 N > 5 

nlβ  1.875104 4.694091 7.854757 10.995540 14.137168 (2 1)
2

N π
−   

nσ  0.7341 1.0185 0.9992 1.0000 1.0000 1.0000 

 
Additionally, we must also define what shape function or mode shape equation we are going 
to use. The shape function needs to be assessed at two known boundary conditions; 

(0) 0 & (0) 0r rφ φ ′= = . Putting these set of Boundary conditions will lead us to;  

1 2( ) (cos cosh ) (sin sinh )r n n n nx A x x A x xφ β β β β= − + −  

Where, 1A  and 2A  needs to be calculated by factoring in another set of boundary conditions 
which looks after balancing the force and moment equilibrium conditions on the structure. 
For fixed-free boundary condition (a cantilever), the coefficients 1A  and 2A  are ‘-1'  & ‘ nσ ’. 
Hence, our shape function equation becomes [3, p. 539]; 

( ) (cosh cos ) (sinh sin )r n n n n nx x x x xφ β β σ β β= − + −   

We must also learn where the values of nσ came from. For our known cantilever beam boundary 

conditions, the formula to find the mode shape coefficient would be [3, p. 540]; 

sinh sin
cosh cos

n n
n

n n

l l
l l

β βσ
β β

−
=

+
  

 
Using MATLAB symbolic computation, we can replicate the above theory and determine the 
modal frequencies of the simplified approximated structure. The detailed MATLAB script used 
to perform the calculation has been attached in the appendix section. The following 
frequencies were determined from the analytical method using MATLAB computation; 
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Table 3. 1st, 2nd, 3rd frequency for different number of terms included in shape function 

freq  
Values ( Hz ) 

N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 

1f   1.6035 1.6035 1.6035 1.6035 1.6035 1.6035 1.6035 1.6035 

2f   10.0488 10.0488 10.0488 10.0488 10.0488 10.0488 10.0488 10.0488 

3f   28.1377 28.1376 28.1376 28.1371 28.1370 28.1369 28.1369 28.1368 

 
It is a general observation that upon increasing the number of contributing terms in shape 
function, the accuracy of the result improves. From the table above, we can observe that the 
first and second frequency values remains same throughout iterations, however, we can 
identify the third frequency converging to true value as a greater number of terms in the trial 
function are incorporated. But how should we know that the results have converged to a 
greater degree. We can have that indication from plotting a convergence analysis plot. Since 
the first and second frequency values are remaining stable throughout the iteration cases, we 
must only consider the 3rd frequency. In the graph, we would be able to observe from the 
trend-line that value of the frequency starts to plateau. That is when we realize that our 
results have converged. 

 

Figure 8. Convergence plot of Number of terms (N) vs 3rd Frequency.  

From the convergence graph above, we see that the results approach to a stagnant value at 
the frequency of 28.1368 Hz right from the point where N = 9. Hence, it suggests that we must 
have at-least 9 terms included in the shape function.  
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IV.C Pressure-load condition effect 

 A yet another objective of this vibration analysis is to see how pressure conditions develop 
over the wing surface. A large negative or positive pressure over the wing, anywhere in the 
mid-chord length region may introduce new set of calculations for the wing vibration. We 
would then need to include the uniformly varying pressure load as one of the dynamic 
boundary conditions in the equation of motion. If pressure load is established due to flow 
characteristics over a wing surface, there may also be an additional damping term added in 
the equation of motion. Then the equation of motion with damping sD would become; 

( ) ( ) ( ) ( )s s s fM r t D r t K r t B f t+ + = ⋅   

Since damping is introduced not from the boundaries of the wing, we would need to design 
our variables, i.e. ( , )u x t , again such that it now also includes pressure loads in the parameters 
involved. Moreover, the CFD simulation result also indicates that involving the pressure-based 
loads is not necessary since the pressure wave is getting established much farther than the 
concerned region (at  89 - 90 % of chord length). The contour graph below evidences it; 

 
Figure 9. Pressure coefficient contours suggesting high density regions in yellow 
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V. RESULTS 
The two method, namely ANSYS FE analysis and Analytical computation were different 

in the sense that one used a direct replicated virtual model and performed analysis on it, while 
the other was more of a mathematical modelling scheme. The results obtained from analytical 
computation were only in agreement for the 1st frequency value. For the rest two frequencies, 
the values were significantly higher when compared to respective values from ANSYS FEA 
modal results. The error is reported below; 

Table 5. Tabulation of error among the frequency values arrived from both the methods 

Frequency ANSYS FE 
Method 

Analytical 
method 

Absolute 
Error in result 

1f  1.4611 1.6035 9.74 % 

2f  3.9516 10.0488 154 % 

3f  8.1431 28.1368 71.1 % 

Figure 10. Frequency trend of the three modes of vibration for both the methods 

The highlighted 1st frequency value is in good agreement with both the methods. The reason 
for large errors in 2nd and 3rd frequency can be because of incomplete and inadequate design 
attributes in the 3D model description and in the mathematical modelling.   

In this analysis, many assumptions and simplifications have played a great role. The analysis 
was started with Finite Element Analysis using ANSYS where the wing model inputted was a 
simply drafted CAD geometry constructed out of the drawing views of Airbus A380-800. This 
hides the effects of all the individual interacting elements. The way they are constrained in 
the overall wing structure is also crucial from engineering analysis point-of-view. Then, we 
switched to analysis using analytical numerical method in MATLAB, where we simply assumed 
that our wing, being a cantilever-like structure can be approximated as a rectangular 
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cantilever beam-like structure. Therefore, the shape details cannot be modelled 
appropriately in the MATLAB analysis method. A yet another shortcoming of this analytical 
analysis was computation accuracy and resultant time. It was observed that with higher 
number of terms in the mode shape, the integration resulted in better answers. However, it 
drastically affected the time taken to deliver the results. With each increasing number of 
terms, the size of &s sM K  blocks are increasing several folds. The analytical way uses an in-

built integration function - ‘integral3’. This function uses Riemann sum; an integral 
approximation which uses finite element sum. Since Riemann sum is a kind of discretization 
process, it is incurring higher amount of calculation time with larger dimensions of &s sM K  

matrices.   

A complete free-vibration analysis would demand that true flight conditions be emulated and 
vibrating natural frequencies at which the whole wing structure resonates be recorded.  
Nonetheless, it can be reasonably said that these simplifications and assumptions work well 
when performing a non-standard computer-based simulation test.  

V. CONCLUSIONS 
Overall, this project was a good opportunity to understand the dynamics of free-

vibration problem. The wing of the chosen aircraft model was believed to appertain from 
supercritical air-foil profile series which was validated by fluid-flow simulation using ANSYS 
CFD .The aircraft wing being the substrate was approximated as a cantilever beam whose 
vibration characteristics were determined using ANSYS FE analysis, and later an analytical 
method given by Rayleigh-Ritz was implemented to validate the results with that of ANSYS 
FEA. The investigation revealed that the values of 1st modal frequency at which the whole 
wing would naturally vibrate were of the same tune from both the methods. However, the 
subsequent 2nd and 3rd modal frequencies were resulted out-of-tune with a high magnitude 
of error. This points at the assumptions and simplifications which were a part of this study. 

The applicability of analytical computation methods like Rayleigh-Ritz approximation is 
guaranteed by a near correct 1st frequency value of the mode. It was proved that including 
larger number of terms improves the results and make them converge to a higher accuracy. 
A large number of terms would mean that the same shape function would get superimposed 
again and again for the desired number of times, hence closing-up to the desired. But 
involving large number of terms has direct effect on computation time. We can work on 
creating a robust goal-seeking algorithm which is time efficient. Also, there needs to be more 
refinement in the design and parameterization in order to justifiably represent such life-size 
aircraft wing given all the structural complexities that lies in it. 
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